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Abstract 
 
The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zero-
adjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and 
compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like 
territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always 
present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the 
Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles 
using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain 
premium pricing. 
 
Key words: auto insurance; claim size; regression; Tweedie; ZAIG mater. 
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Introduction 
 
 

There is a well known problem in the insurance industry concerning the proper pricing of an 
insurance policy. An insurance company’s pure premium for an insured individual is made up of two 
components: claim probability and expected claim size. The claim probability for any individual is 
related to the number of claims expected to occur in a given year. The claim size is simply the dollar 
cost associated with each claim. The difficulty of estimating the size and probability of claims in the 
insurance industry has been extensively reported in the literature (e.g. Jong & Heller, 2008). In the 
past, the main difficulty was related to the credibility of the insurance company datasets (Weisberg & 
Tomberlin, 1982). Insurance datasets were typically very large, containing from tens of thousands to 
millions of cases. Problems such as missing values and inconsistent or invalid records arose. As 
current information technology systems have become more sophisticated over the years, the 
processing of information has become more credible than ever before.  

The challenge then is to employ a proper statistical technique to analyze insurance data. Claims 
and risks have long been estimated using a pure algorithmic technique or a simple stochastic technique 
(Wüthrich & Merz, 2008). These methods result in poor estimations. Huang, Zhao and Tang (2009) 
consider a risk model in which the claim number process is treated as a Poisson model and the 
individual claim size is assumed to be a fuzzy random variable. Jørgensen and Souza (1994) suggested 
a Poisson sum of Gamma random variables called Tweedie to estimate insurance risk. According to 
Smyth and Jørgensen (2002), there is also another problem in that the proposed Tweedie model does 
not permit the separate estimation of probability and claim size.  

Recent studies have perceived that a zero-adjusted Inverse Gaussian (ZAIG) distribution may be 
appropriate to estimate claim and risk in insurance data (Heller, Stasinopoulos, & Rigby, 2006). A 
mixed discrete-continuous model, with a probability mass of zero and an Inverse Gaussian continuous 
component, appears to estimate accurately in extreme right skewness distributions. This suggests that 
probabilities can be calculated from datasets with a large number of zero claims. The ZAIG model 
explicitly specifies a logit-linear model for the occurrence of a claim (i.e. claim probability). When a 
claim has been made, the ZAIG model also specifies log-linear models for the mean claim size and the 
dispersion of claim sizes. It is important to measure the probability and size of claims separately 
because it is possible for the probability to depend on a set of independent variables which is different 
from those that influence claim size. Therefore, ZAIG estimation appears to be more appropriate for 
estimating the price of insurance policies.  

Once an estimation method has been defined, the challenge is to identify potential explanatory 
variables. Typically, policy holders are divided into discrete classes on the basis of certain measurable 
characteristics predictive of their propensity to generate losses. We evaluate claims by considering 
vehicle variables that are frequently used in the literature. In addition to territory, claims have also 
been studied in relation to the car manufacturer and vehicle’s characteristics: age, type and origin. 
Based on previous research, all of these variables must be used in the estimation.   

Our objective is to present the ZAIG method of estimation to determine probability claims and 
the expected claim size in the insurance industry and to formally test the results with an estimation 
based on a Tweedie regression model using an insurance dataset. Insurance data were collected to 
analyze the impact of factors estimated by the Tweedie and ZAIG methods. 

This work is divided into five sections. In the next section, we will discuss the theoretical 
background based on previous research in insurance claim estimates. We also present the Tweedie and 
ZAIG methods in the next section. The third section discusses the methodology and the dataset. The 
fourth section presents the analysis of the results and a comparison of the findings from the two 
methods. Finally, we present our concluding remarks and highlight the major contributions of our 
study.  
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Theoretical Background 
 
 
Insurance: importance of predictions and predictors 

 
The probability and claim size forecast is very important, since an insurance company can use 

these estimates to offer or not offer premium discounts depending on an individual client’s 
characteristics or create strategies for detecting fraudulent claims (Viaene, Ayuso, Guillen, Van Gheel, 
& Dedene, 2007). An insurance company can also estimate total claim size using vehicles 
characteristics to get an idea of how much will be spent on the claim over a certain period and for a 
specific client portfolio. Insurance companies are constantly looking for ways to better predict claims. 
Overall, insurance involves the sum of a large number of individual risks of which very few will result 
in insurance claims being made. Meulbroek (2001) argues that insurance companies need to treat risk 
management as a series of related factors and events. Boland (2007) suggests that, in order to handle 
claims arising from incidents that have already occurred, insurers must employ predictive methods to 
deal with the extent of this liability. Therefore, an insurance company has to find ways to predict 
claims and appropriately charge a premium to cover this risk.  

The prediction problem has to be considered in the light of competitive market insurance 
(Weisberg, Tomberlin, & Chartterjee, 1984). It is possible for an insurer to benefit at least temporarily 
by identifying segments of the market that are currently being overcharged and offering coverage at 
lower rates or by avoiding segments that are being undercharged (Doherty, 1981). Regulators are 
usually concerned about the possibility of rate structures that severely penalize individuals with some 
characteristics (e.g. where they live, model of vehicle). Therefore, insurers look for better ways to 
capture the characteristics of individuals that affect claim size and probability, and consequently 
identify insured drivers that have a higher propensity for generating losses. 

Insurance companies attempt to estimate reasonable prices for insurance policies based on the 
losses reported for certain kinds of policy holders. This estimate has to consider past data in order to 
grasp the trends that have occurred (Weisberg & Tomberlin, 1982). Information available to predict 
the price for a period in the future usually consists of the claim experience for a population or a large 
sample from the population over a period in the past. Accurate estimation may consider a large 
number of exposures in a dataset and a stable claim generation process over time. 

The predictors for estimating the appropriate price for insurance policies were selected from the 
automobile industry. In our study, we consider the issue of price prediction in the context of the 
automobile industry because the most sophisticated proposals have been developed in this industry 
(Jong & Heller, 2008). Previous research in the automobile setting has used predictors such as territory 
(e.g. Chang & Fairley, 1979) and car manufacturer (e.g. Heller et al., 2006). Weisberg et al. (1984) 
suggest including variables associated with the status of the vehicle such as age, type and origin.  

Previous studies have recognized the utility of the Tweedie method in estimating auto insurance 
claims (Smyth & Jørgensen, 2002) and recent studies have shown that the ZAIG method may produce 
accurate models of estimation (Heller et al., 2006). In order to estimate, it is necessary to let yi be the 
size expended on claims for client i and to let xi be a vector of independent variables related to this 
client. One may represent the variable yi as  

⎩
⎨
⎧

=
         y  πprobabilit  with  ,W

)π-(1y  probabilit  with  0,
y

ii

i
i

 

where Wi  is a positive right skewed distribution. This type of variable belongs to the class of the zero 
inflated probability distributions (e.g. Gan, 2000). The parameter πi is the claim probability and Wi 
represents the claim size related to client i. 
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It is important to note that a claim is, in general, a rare event. A small proportion of claims in a 
sample may lead to problems in predicting claim occurrence by a logistic model because, in this case, 
the predicted probabilities tend to be small. King and Zeng (2001) proposed a correction to be used in 
these situations. They used the fact that, in the presence of rare events, the independent variable 
coefficients are consistent, but the intercept may not be.  

 
Tweedie regression models 

 
A Tweedie distribution (Jørgensen, 1987, 1997) is a member of the class of exponential 

dispersion models. It is defined as a distribution of the exponential family (e.g. Jong & Heller, 2008) 
with mean μ and variance φ μ p; in this work, as in Jørgensen and Souza (1994) and Smyth and 
Jørgensen (2002), we consider the case 1<p<2. It is possible to write 

⎩
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,  ∑
=
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ij
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(1)

where Ni is a Poisson random variable that represents the number of claims that have occurred for the 
client i and 

iiNi XX ,,1 L  are independent identically distributed Gamma random variables (continuous 

variables). As a consequence iW  also follows a Gamma distribution, which has a positive and right 
skewed density probability function. In this work, we use a log-linear Tweedie regression model, 
given by  

γx
i

T
ieμ = , 

where xi is a matrix of independent variables and γ is the parametric vector. 
 
ZAIG regression model 
 

The variable yi follows a ZAIG distribution (Heller et al., 2006) if Wi is a Gaussian inverse 
random variable. The Gaussian inverse is a positive and highly skewed distribution with two 
parameters: the mean (μi) and a dispersion parameter (λi). It may be proved that  

iii μπ)E(y =     and ( )2
iii

2
iii λμπ1μπ)Var(y +−= . 

In the context of this work, μi is the expected claim size and λi is a parameter related to claim 
size dispersion. It is possible to propose regression models for πi, μi and λi as 

( )βxhπ T
i1i = , ( )γzhμ T

i2i = , ( )δwhλ T
i3i = , 

where h1, h2 and h2 are continuous twice differentiable invertible functions, β, γ and δ are parametric 
vectors, and xi, zi and wi are vectors of independent variables for client i.  

In an insurance context, it is highly convenient to use different sets of independent variables to 
model these three parameters. Consider, for instance, a variable that indicates the location of a car 
owner’s residence. It is well known that robbery rates vary within a city, but the price of a vehicle 
does not. Since it is expected that the location will be important when it comes to explaining πi, but 
not μi, then one may include the variable in the probability model but not in the expected claim size 
model. This example illustrates the statement by Heller et al. (2006, p. 227) that “A problem with the 
Tweedie distribution model is that probabilities at zero cannot be modeled explicitly as a function of 
explanatory variables…”  
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The following models are adjusted: 

βx

βx

i T
i

T
i

e1
eπ
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T
ieμ =  and δx

i

T
ieλ = .  

(2)

In short, this modeling option assures that μi and λi are, as expected, always positive and that πi 
is modeled as a logistic regression. It is important to remember the bad performance of logistic models 
in predicting claims, when the frequency of claims in the sample is small.  
 
 
Results and Discussion 
 
 
Dataset and sample summary statistics 

 
A sample was collected from a major automobile insurance company resulting in a dataset of 

32,783 passenger vehicle records belonging to a corporate fleet. As all corporation employees could 
drive the vehicle, it makes no sense to use individual driver characteristics as explanatory variables for 
explaining probability and claim size.  

The dataset was processed to remove missing values and generate a selection of relevant 
variables. We have focused the analysis on yearly claims involving robbery or accidents with claim 
sizes which were greater than the vehicle’s value. Claim size refers to the dollar cost paid as a liability 
of a claim. Claim probability refers to the percentage of claims over the period of a year. The average 
annual claim probability is 1.17%, and the average claim size is $243.98. When the event occurs, the 
average claim size increases to $21,048.03.  

For every insurance policy holder, twenty explanatory variables were employed. The variables 
correspond to vehicle characteristics and are coded by means of binary variables, as described in Table 
1. Table 2 shows the descriptive statistics of the variables. 
 
Table 1 
 
List of Explanatory Variables 
 

Variable  Description 
Vehicle Age (II) Equals 1 if the insured vehicle is one or two years old (in relation to contract year), 

otherwise 0 
Vehicle Age (III) Equals 1 if the insured vehicle is three or four years old (in relation to contract year), 

otherwise 0 
Vehicle Age (IV) Equals 1 if the insured vehicle is five or six years old (in relation to contract year), 

otherwise 0 
Vehicle Age (V) Equals 1 if the insured vehicle is seven to nine years old (in relation to contract year), 

otherwise 0 
Vehicle Age (VI) Equals 1 if the insured vehicle is ten or more years old (in relation to contract year), 

otherwise 0 
Origin Equals 1 if the insured vehicle is imported and 0 if it is domestic 
Model/Manufac. A combination of different models and manufacturers in the dataset. Groups were 

assigned on the basis of a CHAID analysis. 
Territory  Clusters of territory were assigned based on Hierarchical Cluster Analysis Method for 

claim size. It divides the region into a set of exclusive areas thought to be relatively 
homogeneous in terms of claims. Vehicles are assigned to territories according to where 
they were usually garaged. 

Continues 
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Table 1 (continued) 
 

Variable  Description 

Vehicle Type (II) Equals 1 for a midsize vehicle, otherwise 0 

Vehicle Type (III) Equals 1 for a luxury vehicle, otherwise 0 

Intercept New Vehicle (zero years old in relation to contract year - Vehicle’s Age (I)), Domestic, 
Model/Manufacturer (I), Territory (I) and small vehicle (Vehicle Type (I)) 

 
Table 2 
 
Descriptive Statistics for Proportion of Claims and for Claim Size  
 

Variable Value Percentage of 
Claim 

Claim size 
Sample 

Size 
Total Sample Claim Size>0 

Mean SD Mean SD 

Vehicle Age 
  

I 0.94 307.44 3,522.98 32,795.57 16,171.44 8,854

II 1.08 246.91 2,719.76 23,072.27 12,883.00 10,559

III 1.12 208.37 2,173.75 18,807.96 8,813.48 6,589

IV 1.10 160.62 1,691.55 14,660.81 7,063.96 3,286

V 2.12 226.53 1,642.89 10,672.59 3,990.81 2,497

VI 2.20 203.04 1,494.61 9,210.65 4,374.82 998

Origin Domestic 1.20 252.60 2,748.35 21,098.32 13,842.19 30,320

Imported 1.11 137.86 1,857.72 19,974.17 10,491.21 2,463

Model/Manuf. 
   

I 1.69 332.55 2,899.69 19,749.50 10,790.52 11,462

II 1.27 628.48 6,015.09 49,380.62 21,589.70 1,100

III 0.38 73.89 1,319.75 19,644.96 9,559.60 1,861

IV 1.11 155.25 1,659.29 14,244.86 7,255.25 6,331

V 2.48 374.20 2,997.42 15,092.71 12,335.49 484

VI 0.82 263.54 3,630.81 32,256.95 26,900.88 612

VII 0.53 92.36 1,361.69 17,497.01 7,007.88 3,789

VIII 0.73 148.82 2,189.99 20,401.90 16,009.04 2,879

IX 1.37 430.87 4,094.29 31,547.34 16,003.95 1,684

X 0.62 204.76 2,697.10 33,030.77 9,728.11 2,581

Territory 
 

I 2.07 502.80 4,213.33 24,259.88 16,871.42 2,895

II 1.08 218.91 2,494.36 20,445.81 12,964.14 29,888

Vehicle Type   Small 1.22 184.61 1,860.49 15,351.51 7,435.96 15,218

Midsize 1.45 371.67 3,554.41 25,586.44 15,029.12 11,290

Luxury 0.53 158.21 2,586.10 30,083.29 19,567.01 6,275

Complete Sample  1.17 243.98 2,691.84 21,048.03 13,700.82 32,783 

Based on Table 2 one can perceive that claims occur more often with older cars, but the cost of 
the claim reduces as the car’s age increases. Domestic and imported vehicles have approximately the 
same percentage of claims and claim sizes. There are differences in the frequency and cost of claims 
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depending on the model and the manufacturer (Model/Manuf). Region I has the largest percentage of 
claims as well as the highest cost for these claims. In terms of vehicle size, most of the claims are for 
small and midsize cars, while the costs increase in percentage according to the size of the vehicle.  
 
Inferential analysis 
 

The ZAIG model was estimated by the GAMLSS package (Stasinopoulos & Rigby, 2007; 
Stasinopoulos, Rigby, & Akantziliotou, 2008) for the R system (R Development Core Team, 2007). 
The Tweedie model was estimated using the SPSS package (version 16.0). In this section we divide 
the sample into two parts: a subsample of 22,783 to fit the models, and a subsample of 10,000 to 
forecast the total claim size. 

Table 3 shows the results of the estimates. The dependent variable is the claim size and refers to 
robberies or accidents with repair sizes greater than the vehicle’s value.  
 
Table 3 
 
Tweedie and ZAIG Model Results  
 

Variable 

Tweedie 
Equation 1 

ZAIG 

Equation 2: ν=1-π
(Claim Probability)

Equation 3: μ 
(Claim Size) 

Equation 4: λ 

   Estimate    (SE) Estimate      (SE) Estimate       (SE) Estimate      (SE) 

 Intercept 6.54** (0.29) 3.70** (0.20) 10.20** (0.12) -5.32** (0.11) 

Vehicle’s Age (II) -0.18 (0.22) -0.11 (0.18) -0.33** (0.11) -0.24* (0.12) 

Vehicle’s Age (III) -0.48* (0.27) 0.01 (0.20) -0.57 1.71) 3.22** (0.14) 

Vehicle’s Age (IV) -0.56* (0.34) -0.21 (0.23) -0.94** (0.12) -0.09 (0.16) 

Vehicle’s Age (V) -0.10 (0.35) -0.86** (0.21) -1.02** (0.11) -0.52** (0.14) 

Vehicle’s Age (VI) -0.12 (0.52) -0.86** (0.30) -1.28** (0.12) -0.38** (0.21) 

Model/Manuf (II) 1.01** (0.40) -0.20 (0.31) 0.66** (0.12)   

Model/Manuf (III) -0.89* (0.49) 0.79* (0.43) 0.29** (0.11)   

Model/Manuf (IV) -0.74** (0.26) 0.49** (0.17) -0.05 (0.08)   

Model/Manuf (V) 0.28 (0.68) -0.89** (0.36) 0.22** (0.1)   

Model/Manuf (VI) 0.04 (0.65) 0.33 (0.52) 0.21 (0.50)   

Model/Manuf (VII) -1.24** (0.35) 1.27** (0.28) 0.20 (0.14)   

Model/Manuf (VIII) -0.69* (0.35) 0.98** (0.30) 0.74** (0.12)   

Model/Manuf (IX) 0.24 (0.37) 0.23 (0.30) 0.30** (0.11)   

Model/Manuf (X) -0.57 (0.37) 0.98** (0.33) 0.36** (0.16)   

Origin -0.37 (0.40) 0.09 (0.31) 0.13 (0.09)   

Territory (II) -0.84** (0.22) 0.61** (0.15) -0.10* (0.06)   

Vehicle Type (II) 0.35 (0.22) -0.12 (0.15) 0.12 (0.08) 0.22** (0.09) 

Vehicle Type (III) -0.23 (0.30) 0.87** (0.25) 0.33** (0.07) -1.37** (0.15) 

Scale 2472.92 (107.38)       

Note. *p<0.10; **p<0.05. Regression coefficients are standardized coefficients (β) and standard error within parentheses 
(SE). 
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Several explanatory variables were significantly related to dependent variables. Considering all 
vehicle age variables, we can say that there is a significant increase in the expected claim probability 
as the vehicle becomes older. On the other hand, the expected claim size decreases for older vehicles. 
This is in line with intuition and descriptive analysis, because old vehicles are less expensive to 
replace and there is also the fact that old vehicles are more attractive targets. One might suggest that 
old vehicles are more attractive targets because there is a great auto part replacement market that gets 
flooded with stolen parts for these old cars. Older cars also tend to be poorly maintained, and this 
increases the probability of accidents.  

The variable model/manufacturer is related to claim probability and size. In general, the 
model/manufacturer is more closely related to claim probability than claim size. It is noteworthy that 
there is no way of clearly identifying whether claim size or probability is causing the significance of 
the Tweedie coefficients.  

The variable for vehicle origin does not influence the claim probability or size. This suggests, 
ceteris paribus, that domestic and imported vehicles tend to have the same claim size. Territory is 
generally related to claim probability and size; in this case there are some regions that have more 
carjackings than others.  

Vehicle type is related to claim size and probability. The claim probability decreases for luxury 
vehicles. However luxury cars lead to higher claim sizes compared to small and midsize cars. Looking 
at the Tweedie results, the difficulty in accurately predicting claims becomes obvious given the non-
significance of the Tweedie coefficient for vehicle type. One might suggest that the non-significant 
coefficient is due to a negative claim probability effect and a positive claim size effect, as found in the 
ZAIG coefficients. 

The total claim size forecast was made by adding together the individual forecast claim sizes 
based on the Tweedie and ZAIG models. Using parametric bootstrap simulation, we obtained a 95% 
confidence interval, based on empirical quantiles of 5,000 bootstrap estimates. For further details, see 
Efron and Tibishirani (1986).  

Table 4 shows the estimated and true total claim size and the 95% confidence interval. The 
ZAIG model was better than the Tweedie model when it came to forecasting the total claim size, and 
both models showed negative bias. We notice that the forecasts lie within the confidence bands for 
both models, indicating good estimation results. Using inferior and superior limits, the insurance 
company can begin to picture total claim size dispersion. 

We also calculated the mean squared error (MSE) and the mean absolute error (MAE) for the 
residuals. The results are very similar for both the Tweedie and ZAIG models. 
 
Table 4 
 
Total claim size, inferior and superior limits, mean squared error and mean absolute error for 
Tweedie and ZAIG models 
 

 Tweedie ZAIG True 

Total Claim Size $ 2,089,845 $ 2,213,629 $ 2,432,513 

LI $ 1,407,114 $ 1,429,470  

LS $ 4,407,782 $ 3,230,824  

MSE 4.2999x1012 4.7492x1012  

MAE 2,075,580 2,184,292  
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Concluding Remarks 
 
 

In this work we have tackled a well-known problem in the insurance industry, which is the 
proper pricing of an insurance policy. Employing the ZAIG estimation method for claims and risks in 
the insurance industry, we found distinct factors that influence claim size and probability. Factors such 
as territory, a vehicle’s advanced age, origin and type distinctly influence claim size and probability. 
The distinct impact is not always present in the Tweedie estimated model. The ZAIG estimation 
method also allows insurance companies to create a score system to predict claims, based on the 
logistic model. This score system identifies policy holders who tend to be more risky. These estimated 
models thus may be employed to develop a strategy for premium pricing. Moreover, insurance 
companies can use vehicle characteristics to estimate total claim size and thus get an idea of how 
much they will have to spend on a claim over a certain period of time and for a specific client 
portfolio. 

Some limitations to this study should be pointed out. First, the methods require a high 
computational effort that may preclude the use of larger datasets. Second, there is room for developing 
suitable methods for longitudinal data analysis. Future work may consider the use of estimating 
equation techniques or multivariate ZAIG distributions. We concentrated our research on the auto 
insurance industry and specific vehicle variables. Further studies may address other insurance 
industries and include customer related variables.  
 
Received 03 February 2010; received in revised form 28 June 2010.  
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