Value Co-Destruction in Food Delivery Apps: A Text Mining Approach Based on Google Play Reviews

Main Article Content

Renato Calhau Coda
Josivania Silva Farias

Abstract

Objective: negative experiences with food delivery applications can erode consumer trust and reduce the perceived value of technology-mediated marketplaces. Methods: this study examines value co-destruction (VCD) by analyzing over 100,000 user reviews on Google Play for the 10 most popular food delivery apps in Brazil. Using natural language processing, sentiment analysis, and clustering techniques, the study identified recurring patterns of dissatisfaction and categorized them into nine distinct user experience (UX) failure clusters. These include payment system breakdowns, ineffective support, delivery delays, app performance issues, and usability barriers. Results: the analysis reveals that technological and operational misalignments, such as payment crashes, unresolved
refunds, and rigid support processes, undermine perceived value. By linking consumer sentiment to specific mechanisms of VCD, the study advances the understanding of the ‘dark side’ of digital consumption and provides a scalable analytical framework for
monitoring and diagnosing systemic service failures. Conclusions: the findings offer practical guidance for improving app stability, streamlining transaction processes, and designing more responsive and empathetic customer support. Ultimately, this
helps digital platforms prevent value destruction and sustain consumer engagement. 

Downloads

Download data is not yet available.

Article Details

How to Cite
Coda, R. C., & Farias, J. S. (2026). Value Co-Destruction in Food Delivery Apps: A Text Mining Approach Based on Google Play Reviews. Brazilian Administration Review, 23(1), e250188. https://doi.org/10.1590/1807-7692bar2026250188
Section
Research Articles

References

Abbott, D. (2014). Applied predictive analytics: Principles and techniques for the professional data analyst. John Wiley and Sons.

Agarwal, S., Singh, S., Hazela, B., & Singh, V. (2024, September). Harnessing Machine Learning for Effective Customer Segmentation. In 2024 International Conference on Signal Processing and Advance Research in Computing (SPARC) (Vol. 1, pp. 1-6). IEEE.

Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on big data in marketing: A text mining and topic modeling-based literature analysis. European Research on Management and Business Economics, 24(1), 1-7. https://doi.org/10.1016/j.iedeen.2017.06.002

Antonio, N., Almeida, A. M., Nunes, L., Batista, F., & Ribeiro, R. (2018). Hotel online reviews: Creating a multi-source aggregated index. International Journal of Contemporary Hospitality Management, 30(12), 3574-3591. https://doi.org/10.1108/IJCHM-05-2017-0302

Balzano, M., Ciacci, A., & Marzi, G. (2024). Digital business models: An evolutionary perspective on how digital technologies shape ecosystems. In Digital Entrepreneurship in Science, Technology and Innovation (pp. 66-90). Edward Elgar Publishing.

Baptista, T. F., & Hemais, M. W. (2020). Reclamações fraudulentas a partir de características da cultura brasileira: Um estudo qualitativo utilizando a técnica projetiva. REAd. Revista Eletrônica de Administração, 26(1), 81-113. https://doi.org/10.1590/1413-2311.275.94047

Bauer, K., Li, X., & Hinz, O. (2025). My Advisor, Her AI and Me: Evidence from a field experiment on human-AI collaboration and investment decisions. arXiv preprint arXiv:2506.03707. https://doi.org/10.48550/arXiv.2506.03707

Becker, L., & Jaakkola, E. (2020). Customer experience: Fundamental premises and implications for research. Journal of the Academy of Marketing Science, 48(4), 630-648. https://doi.org/10.1007/s11747-019-00718-x

Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2020). Service robot implementation: A theoretical framework and research agenda. The Service Industries Journal, 40(3-4), 203-225. https://doi.org/10.1080/02642069.2019.1672666

Bingham, E., & Mannila, H. (2001, August). Random projection in dimensionality reduction: applications to image and text data. In Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 245-250).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022. https://dl.acm.org/doi/10.5555/944919.944937

Buhalis, D., & Sinarta, Y. (2019). Real-time co-creation and nowness service: Lessons from tourism and hospitality. Journal of Travel and Tourism Marketing, 36(5), 563-582. https://doi.org/10.1080/10548408.2019.1592059

Campello, R. J., Moulavi, D., Zimek, A., & Sander, J. (2015). Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1), 1-51. https://doi.org/10.1145/2733381

Codá, R. C., & Farias, J. S. (2022). Interactive value formation: Exploring the literature on dark side of the service experience from the Perspective of Value Co-Destruction (VCD). Services Marketing Quarterly, 43(4), 520-540. https://doi.org/10.1080/15332969.2021.1997505

Celuch, K. (2021). Customers’ experience of purchasing event tickets: Mining online reviews based on topic modeling and sentiment analysis. International Journal of Event and Festival Management, 12(1), 36-50. https://doi.org/10.1108/IJEFM-06-2020-0034

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step data mining guide. CRISP-DM Consortium. https://the-modeling-agency.com/crisp-dm.pdf

Davenport-Klunder, K., & Hine, K. (2023). ‘Setting benchmarks and breaking chains’: Public opinions of female police officers. Policing and society, 33(6), 643-665. https://doi.org/10.1080/10439463.2023.2175823

De Keyser, A., Verleye, K., Lemon, K. N., Keiningham, T. L., & Klaus, P. (2020). Moving the customer experience field forward: Introducing the touchpoints, context, qualities (TCQ) nomenclature. Journal of Service Research, 23(4), 433-455. https://doi.org/10.1177/1094670520928390

Echeverri, P., & Skålén, P. (2021). Value co-destruction: Review and conceptualization of interactive value formation. Marketing Theory, 21(2), 227-249. https://doi.org/10.1177/1470593120983390

ElKattan, A. G., Gavilan, D., Elsharnouby, M. H., & Mahran, A. F. A. (2023). Mapping sharing economy themes: Science mapping, topic modeling, and research agenda. Journal of Marketing Analytics, 12, 1-22. https://doi.org/10.1057/s41270-023-00238-2

Haenlein, M., Bitner, M. J., Kohli, A. K., Lemon, K. N., & Reibstein, D. J. (2022). Guest editorial: Responsible research in marketing. Journal of the Academy of Marketing Science, 50(1), 8-12. https://doi.org/10.1007/s11747-021-00812-z

Harmeling, C. M., Moffett, J. W., Arnold, M. J., & Carlson, B. D. (2017). Toward a theory of customer engagement marketing. Journal of the Academy of Marketing Science, 45(3), 312-335. https://doi.org/10.1007/s11747-016-0509-2

Fernandes, M. E., & Nuzzi, A. P. E. (2024). Grounds of the General Data Protection Law (LGPD): A narrative review. Research, Society and Development, 11(12), e310111234247. https://doi.org/10.33448/rsd-v11i12.34247

Garzaro, D. M. (2022). As ligações entre qualidade de serviço, engajamento do consumidor, cocriação e codestruição de valor: Usando inteligência artificial para análise de tuítes de fintechs brasileiras [Doctoral dissertation]. Universidade Nove de Julho, Brazil.

Ghasemaghaei, M. (2023). Does knowledge sharing belief of data analysts impact their behavior?. Journal of Computer Information Systems, 63(2), 460-478. https://doi.org/10.1080/08874417.2022.2070799

Ghose, A., & Han, S. P. (2023). Estimating demand for mobile applications in the new economy. Management Science, 60(6), 1470-1488. https://doi.org/10.1287/mnsc.2014.1945

Gilbert, J.-P., Ng, V., Niu, J., & Rees, E. E. (2020). A call for an ethical framework when using social media data for artificial intelligence applications in public health research. Canadian Communicable Disease Report, 46(6), 169-173. https://doi.org/10.14745/ccdr.v46i06a0

Gkritzali, A., Mavragani, E., & Gritzalis, D. (2020). Negative MWOM and value co-destruction during destination crises. Business Process Management Journal, 26(4), 839-856. https://doi.org/10.1108/BPMJ-07-2019-0278

Han, H. J., Mankad, S., Gavirneni, N., & Verma, R. (2016). What guests really think of your hotel: Text analytics of online customer reviews. Cornell Hospitality Report, 16(2), 3-17. https://doi.org/10.13140/RG.2.1.3963.6244

Hartmann, N. N., & Lussier, B. (2020). Managing the sales force through the unexpected exogenous COVID-19 crisis. Industrial Marketing Management, 88, 101-111. https://doi.org/10.1016/j.indmarman.2020.05.005

Hazée, S., Van Vaerenbergh, Y., & Armirotto, V. (2017). Co-creating service recovery after service failure: The role of brand equity. Journal of Business Research, 74, 101-109. https://doi.org/10.1016/j.jbusres.2017.01.014

Hollebeek, L. D., Sprott, D. E., Andreassen, T. W., Costley, C., Klaus, P., Kuppelwieser, V., Karahasanovic, A., Taguchi, T., Islam, J. U., & Rather, R. A. (2019). Customer engagement in evolving technological environments: Synopsis and guiding propositions. European Journal of Marketing, 53(9), 2018-2023. https://doi.org/10.1108/EJM-09-2019-970

Hoyer, W. D., Kroschke, M., Schmitt, B., Kraume, K., & Shankar, V. (2020). Transforming the customer experience through new technologies. Journal of Interactive Marketing, 51(1), 57-71. https://doi.org/10.1016/j.intmar.2020.04.001

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210. https://doi.org/10.1016/j.ins.2022.11.139

Hu, H., Liu, J., Zhang, X., & Fang, M. (2023). An effective and adaptable K-means algorithm for big data cluster analysis. Pattern Recognition, 139, 109404. https://doi.org/10.1016/j.patcog.2023.109404

Järvi, H., Kähkönen, A. K., & Torvinen, H. (2018). When value co-creation fails: Reasons that lead to value co-destruction. Scandinavian Journal of Management, 34(1), 63-77. https://doi.org/10.1016/j.scaman.2018.01.002

Järvi, H., Keränen, J., Ritala, P., & Vilko, J. (2020). Value co-destruction in hotel services: Exploring the misalignment of cognitive scripts among customers and providers. Tourism Management, 77, 104030. https://doi.org/10.1016/j.tourman.2019.104030

Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimedia tools and applications, 78(11), 15169-15211. https://doi.org/10.1007/s11042-018-6894-4

Keiningham, T., Aksoy, L., Bruce, H. L., Cadet, F., Clennell, N., Hodgkinson, I. R., & Kearney, T. (2020). Customer experience driven business model innovation. Journal of Business Research, 116, 431-440. https://doi.org/10.1016/j.jbusres.2019.08.003

Kleijnen, M., De Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile service delivery and the moderating role of time consciousness. Journal of Retailing, 83(1), 33-46. https://doi.org/10.1016/j.jretai.2006.10.004

Laud, G., Bove, L., Ranaweera, C., Leo, W. W. C., Sweeney, J., & Smith, S. (2019). Value co-destruction: A typology of resource misintegration manifestations. Journal of Services Marketing, 33(7), 866-889. https://doi.org/10.1108/JSM-01-2019-0022

Lavorgna, A., Ugwudike, P., Carr, L., Benitez, Y. S., & Rekha, G. S. (2021). To app or not to app?: Understanding public resistance to COVID-19 digital contact tracing and its criminological relevance. Law, Technology and Humans, 3(2), 28-45. https://doi.org/10.5204/lthj.2012

Lei n. 13.709, de 14 de agosto de 2018. (2018). Lei Geral de Proteção de Dados Pessoais. Diário Oficial da União. https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm

Lemon, K. N., & Verhoef, P. C. (2016). Understanding customer experience throughout the customer journey. Journal of Marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420

Liu, B. (2020). Sentiment analysis: Mining opinions, sentiments, and emotions. Cambridge university press.

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. In C. C. Aggarwal & C. X. Zhai (Eds.), Mining Text Data (pp. 415-463). Springer.

McColl-Kennedy, J. R., Zaki, M., Lemon, K. N., Urmetzer, F., & Neely, A. (2019). Gaining customer experience insights that matter. Journal of Service Research, 22(1), 8-26. https://doi.org/10.1177/1094670518812182

Meire, M., Hewett, K., Ballings, M., Kumar, V., & Van den Poel, D. (2019). The role of marketer-generated content in customer engagement marketing. Journal of Marketing, 83(6), 21-42. https://doi.org/10.1177/0022242919873903

Mimno, D., Wallach, H. M., Talley, E., Leenders, M., & McCallum, A. (2011). Optimizing sem antic coherence in topic models. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 262-272.

Ostrom, A. L., Field, J. M., Fotheringham, D., Subramony, M., Gustafsson, A., Lemon, K. N., Huang, M.-H., & McColl-Kennedy, J. R. (2021). Service research priorities: Managing and delivering service in turbulent times. Journal of Service Research, 24(3), 329-353. https://doi.org/10.1177/10946705211021915

Otto, C. R. (2023). Automatic understanding of multimodal content for Web-based learning [Technical report].

Plé, L., & Chumpitaz Cáceres, R. C. (2010). Not always co?creation: Introducing interactional co?destruction of value in service?dominant logic. Journal of services Marketing, 24(6), 430-437. https://doi.org/10.1108/08876041011072546

Ponnam, A., & Balaji, M. (2014). Matching visitation-motives and restaurant attributes in casual dining restaurants. International Journal of Hospitality Management, 37, 47-57. https://doi.org/10.1016/j.ijhm.2013.10.004

Prestes, M. V. P., Bonini, D. M. S., Correa de Melo, F., Bastos, M., & Bonini, J. S. (2021). General Data Protection Law No. 13.709/2018: Notes on its context as a legal framework in Brazil. Research, Society and Development, 10(12). https://doi.org/10.33448/rsd-v10i12.20906

Prior, D. D., & Marcos-Cuevas, J. (2016). Value co-destruction in interfirm relationships: The impact of actor engagement styles. Marketing Theory, 16(4), 533-552. https://doi.org/10.1177/14705931166497

Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, Approaches and applications. Knowledge-Based Systems, 89(1), 14-46. https://doi.org/10.1016/j.knosys.2015.06.015

Reisenbichler, M., & Reutterer, T. (2019). Topic modeling in marketing: Recent advances and research opportunities. Journal of Business Economics, 89(3), 327-356. https://doi.org/10.1007/s11573-018-0915-7

Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the space of topic coherence measures. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (WSDM), pp. 399-408. https://doi.org/10.1145/2684822.2685324

Shankar, A., Dhir, A., Talwar, S., Islam, N., & Sharma, P. (2022). Balancing food waste and sustainability goals in online food delivery: Towards a comprehensive conceptual framework. Technovation, 117, 102606. https://doi.org/10.1016/j.technovation.2022.102606

Silva, M. J., Carvalho, P., & Sarmento, L. (2012, April). Building a sentiment lexicon for social judgement mining. In International Conference on Computational Processing of the Portuguese Language (pp. 218-228). Springer Berlin Heidelberg.

Stevens, K. (2012, July). Evaluating unsupervised ensembles when applied to word sense induction. In Proceedings of ACL 2012 Student Research Workshop (pp. 25-30).

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21. https://doi.org/10.1145/3068335

Souza, M., & Vieira, R. (2012, April 17-20). Sentiment analysis on twitter data for Portuguese language. In Computational Processing of the Portuguese Language: 10th International Conference, PROPOR 2012, Proceedings 10 (pp. 241-247), Coimbra, Portugal. Springer.

Subramanya, S. R. (2016). Design elements of mobile apps to be used as supplements in a typical introductory engineering analysis course. Journal of Research in Engineering and Applied Sciences, 1(2), 47-55. https://doi.org/10.46565/JREAS.2016.V01I02.001

Traczyk, J., Fulawka, K., Lenda, D., & Zaleskiewicz, T. (2021). Consistency in probability processing as a function of affective context and numeracy. Journal of Behavioral Decision Making, 34(2), 228-246. https://doi.org/10.1002/bdm.2206

Turel, O. (2021). Technology-mediated dangerous behaviors as foraging for social-hedonic rewards: The role of implied inequality. MIS Quarterly, 45(3), 1249-1286. https://doi.org/10.25300/MISQ/2021/16353

Vafeas, M., Hughes, T., & Hilton, T. (2016). Antecedents to value diminution: A dyadic perspective. Marketing Theory, 16(4), 469-491. https://doi.org/10.1177/1470593116652005

Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic in Markting. Journal of Marketing, 68(1), 1-17. https://doi.org/10.1509/jmkg.68.1.1.24036

Vargo, S. L., & Lusch, R. F. (2017). Service-dominant logic 2025. International Journal of Research in Marketing, 34(1), 46-67. https://doi.org/10.1016/j.ijresmar.2016.11.001

Vargo, S. L., Maglio, P. P., & Akaka, M. A. (2008). On value and value co-creation: A service systems and service logic perspective. European Management Journal, 26(3), 145-152. https://doi.org/10.1016/j.emj.2008.04.003

Vo, D.-T., Hoang, A. P., Dang, D. P. T., & Nguyen, L. V. T. (2023). Exploring value co-destruction process in customer interact ions with AI-Powered mobile applications. Pacific Asia Journal of the Association for Information Systems (PAJAIS) Preprints (Forthcoming). 11. https://aisel.aisnet.org/pajais_preprints/11

Voorhees, C. M., Fombelle, P. W., Gregoire, Y., Bone, S., Gustafsson, A., Sousa, R., & Walkowiak, T. (2017). Service encounters, experiences and the customer journey: Defining the field and a call to expand our lens. Journal of Business Research, 79, 269-280. https://doi.org/10.1016/j.jbusres.2017.04.014

Vu, H. Q., Li, G., Law, R., & Zhang, Y. (2019). Exploring tourist dining preferences based on restaurant reviews. Journal of Travel Research, 58(1), 149-167. https://doi.org/10.1177/0047287517744672

Wang, B., Jin, X., & Ma, N. (2024). Are negative reviews the order terminators? An aspect-based sentiment threshold analysis of online reviews in the context of sharing accommodation. Kybernetes, 54(11), 6687-6719. https://doi.org/10.1108/K-10-2023-2132

Williamson, J. R., & Brewster, S. (2012). A performative perspective on UX. Communications in Mobile Computing, 1(1), 3. https://doi.org/10.1186/2192-1121-1-3

Yu, C.-E., & Zhang, X. (2020). The embedded feelings in local gastronomy: A sentiment analysis of online reviews. Journal of Hospitality and Tourism Technology, 11(3), 461-478. https://doi.org/10.1108/JHTT-02-2019-0028

Zahra, A. R. A., Jonas, D., Erliyani, I., Rosdiana, & Yusuf, N. A. (2023). Assessing customer satisfaction in ai-powered services: An empirical study with smartPLS. International Transactions on Artificial Intelligence, 2(1), 81-89. https://doi.org/10.33050/italic.v2i1.432

Zhang, T., Lu, C., Torres, E., & Chen, P. J. (2018). Engaging customers in value co-creation or co-destruction online. Journal of Services Marketing, 32(1), 57-69. https://doi.org/10.1108/JSM-01-2017-0027

Zhang, H., Liu, R., & Egger, R. (2023). Unlocking uniqueness: Analyzing online reviews of Airbnb experiences using BERT-based models. Journal of Travel Research, 63(7), 1688-1708. https://doi.org/10.1177/00472875231197381 Josivania Silva Farias

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.